SIMPLE CURVES ON TORI 1 Content - Length : 21789 X - Lines : 501 Status : ROSimple curves on hyperbolic toriBy

نویسندگان

  • Greg McShane
  • Igor Rivin
چکیده

Let T be a once punctured torus, equipped with a complete hyperbolic metric. Herein, we describe a new approach to the study of the set S of all simple geodesics on T: We introduce a valuation on the homology H 1 (T; ZZ); which associates to each homology class h the length`(h) of the unique simple geodesic homologous to h; and show thatèxtends to a norm on H 1 (T; R): We analyze the boundary of the unit ball B(`) and the variation of the area of B(`) over the moduli space of T. These results are applied to obtain sharp asymptotic estimates on the number of simple geodesics of length less than L. Courbes simples dans les tores R esum e. Soit T un tore trou e, muni d'une m etrique hyperbolique com-pl ete, d'aire nie. Nous pr esentons une nouvelle approche de l' etude de l'ensemble S de toutes les g eod esiques ferm ees simples (sans points doubles) de T. Nous introduisons une application sur l'homologie H 1 (T; ZZ), qui associe a chaque classe h 2 H 1 (T; ZZ) indivisible la longueur`(h) de l'unique g eod esique simple homologue a h: et nous d emontrons què s' etend en une norme sur H 1 (T; R): Nous etudions la g eom etrie de la sph ere @B(`) et la variation de l'aire de B(`)(T) sur l'espace de modules. On utilise ces r esultats pour donner des estimations asymptotiques du nombre de g eod esiques ferm ees simples de longueur inf erieure a L. Version francaise abr eg ee Soit T un tore trou e, muni d'une m etrique hyperbolique compl ete d'aire nie. Dans cet article nous d ecrivons une m eth-ode pour etudier l'ensemble S des lacets g eod esiques simples sur T: L'ensemble S est un objet assez int eressant (v. ?] pour des applications arithm etiques). Soit S une surface hyperbolique ferm ee, ou avec un seul cusp. Une multi-courbe m sur S est une application continue d'une vari et e de dimension 1 dans S: La longueur d'une multi-courbe est d eenie comme la somme des longueurs The authors would like to thank Peter Sarnak for continued encouragement. 2 GREG MCSHANE AND IGOR RIVIN des images de composantes connexes de M: Nous dirons que m est plong ee lorsque l'image de m est une r eunion disjointe de lacets simples { …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Dilogarithm Identity on Moduli Spaces of Curves

We establish an identity for compact hyperbolic surfaces with or without boundary whose terms depend on the dilogarithms of the lengths of simple closed geodesics in all 3-holed spheres and 1-holed tori in the surface.

متن کامل

Orientation Reversing Involutions on Hyperbolic Tori and Spheres

This article studies the relationship between simple closed geodesics and orientation reversing involutions on one-holed hyperbolic tori. 1. Simple closed geodesics on the one holed torus We consider topological surfaces of signature (g, n) (where g is the underlying genus and n is the number of simple boundary curves) with negative Euler characteristic and endowed with a hyperbolic metric such...

متن کامل

On complex and noncommutative tori

The “noncommutative geometry” of complex algebraic curves is studied. As first step, we clarify a morphism between elliptic curves, or complex tori, and C-algebras Tθ = {u, v | vu = e2πiθuv}, or noncommutative tori. The main result says that under the morphism isomorphic elliptic curves map to the Morita equivalent noncommutative tori. Our approach is based on the rigidity of the length spectra...

متن کامل

Isoperimetric Inequalities for Wave Fronts and a Generalization of Menzin’s Conjecture for Bicycle Monodromy on Surfaces of Constant Curvature

The classical isoperimetric inequality relates the lengths of curves to the areas that they bound. More specifically, we have that for a smooth, simple closed curve of length L bounding area A on a surface of constant curvature c, L2 ≥ 4πA− cA2 with equality holding only if the curve is a geodesic circle. We prove generalizations of the isoperimetric inequality for both spherical and hyperbolic...

متن کامل

Explicit Dehn filling and Heegaard splittings

We prove an explicit, quantitative criterion that ensures the Heegaard surfaces in Dehn fillings behave “as expected.” Given a cusped hyperbolic 3-manifold X, and a Dehn filling whose meridian and longitude curves are longer than 2π(2g − 1), we show that every genus g Heegaard splitting of the filled manifold is isotopic to a splitting of the original manifold X. The analogous statement holds f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995